sistem komunikasi serat optik (SKSO) dibagi menjadi 6 tahap generasi, yaitu seperti
diuraikan di bawah ini.
Generasi Pertama (mulai 1975)
Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari alatencoding yang mengubah input (misal suara) menjadi sinyal listrik, transmitter yang mengubah sinyal listrik menjadi sinyal gelombang berupa LED dengan panjang gelombang 0,87 mm, serat silika sebagai penghantar sinyal gelombang, repeater sebagai penguat gelombang yang melemah di perjalanan,receiver yang mengubah sinyal gelombang menjadi sinyal listrik berupa fotodetector, dan alatdecoding yang mengubah sinyal listrik menjadi output (misal suara).
Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 mencapai kapasitas transmisi sebesar 10 Gb.km/s.
Generasi Kedua (mulai 1981)
Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya, transmitterjuga diganti dengan diode laser dan panjang gelombang yang dipancarkannya 1,3 mm. dengan modifikasi ini, generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.
Generasi Ketiga (mulai 1982)
Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm. kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.
Generasi Keempat (mulai 1984)
Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas, melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi dan jarak yang ditempuh, juga kapasitas transmisinya ikut membesar. Pada tahun 1984, kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi peranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi, tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.
Generasi Kelima (mulai 1989)
Pada generasi ini, dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah fiber optik dengan doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya, sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya, seperti yang terjadi pada repeater. Dengan adanya penguat optik ini, kapasitas transmisi melonjak hebat sekali. Pada awal pengembanganya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian, kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.
Generasi Keenam (mulai 1988)
Pada tahun 1988, Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa lima saluran yang masing-masing membawa informasi dengan laju 5 Gb.km/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika dibuatkan multiplexing polarisasi karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.
Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi fiber optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya. Yang jelas, pada masa mendatang dunia komunikasi, tidak dapat dihindari lagi, akan dirajai oleh teknologi fiber optik.
Tidak ada komentar:
Posting Komentar